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Abstract
This study analyzes the performance of four pre-trained convolutional neural networks (CNNs)
(MobileNetV2, ResNet-50, DenseNet121 andDenseNet201) in classifying chest radiographs
to identify bacterial pneumonia, viral pneumonia or normal cases. MobileNetV2, the most
efficient and accurate model, achieved an overall accuracy of 85%, excelling in the identifi-
cation of normal cases with 99% accuracy. This model was integrated into a Django-based
web system, which allows physicians to upload radiographs, obtain automated diagnoses and
visualize Grad-CAM heat maps for interpretation. The development followed the Scrum
methodology, ensuring iterative progress and continuous improvement. The system aims to
enhance diagnostic accuracy and accessibility, especially in resource-limited settings. Al-
though MobileNetV2 showed good results, its sensitivity for detecting bacterial pneumonia
could be improved, suggesting that future improvements could be achieved with advanced
data augmentation techniques and more extensive validation of the dataset. This work high-
lights the potential of lightweight CNNs in medical diagnostics and presents an efficient and
scalable solution for early detection of pneumonia.

Keywords: Deep learning, Chest X-ray, CNN, Multiclass classification, Pneumonia, Mo-
bileNetV2, DenseNet201, DenseNet121, ResNet50.
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1. INTRODUCTION

Chest X-rays are crucial for the diagnosis of various respiratory diseases, such as pneumonia, which
is responsible for numerous deaths worldwide, especially in children and the elderly [1]. Early and
accurate detection of this pathology is crucial to improve clinical outcomes. In this context, convo-
lutional neural networks (CNNs), a subcategory of artificial intelligence (AI) specialized in image
processing, have revolutionized the field of automated medical image analysis, allowing efficient
and accurate diagnosis [2]. CNNs like MobileNetV2, known for their lightweight architecture and
computational efficiency, have proven to be a promising solution in the automatic classification of
chest X-rays [3].

Recently, the application of pre-trained CNN models has evolved in the field of pneumonia di-
agnosis, with architectures such as MobileNetV2, ResNet-50, DenseNet201, and DenseNet121
standing out, each with specific features and optimizations. MobileNetV2, for example, is designed
to operate efficiently on devices with hardware limitations, while ResNet-50 and DenseNet (in
its versions 121 and 201) offer a complex feature extraction capability that can improve accu-
racy in medical classification tasks [3]. Not all these architectures have the same performance
and efficiency in every medical application, which motivates the comparison between them in the
context of pneumonia detection [4].

Some studies in the literature agree on the methods of applying CNN in pneumonia detection.
Rajpurkar et al. [1], and Nikhade et al. [2], have implemented deep networks for lung disease
diagnosis with high accuracy. Similarly, Stephen et al. [3], and Ayan and Ünver [4], have pointed
out that even lighter models such as MobileNetV2 can be deployed on mobile devices without
a significant drop in diagnostic performance. Liang and Zheng [5], also analyzed the effect of
improving image resolution to obtain better classification results. However, the approaches of these
authors vary significantly. Rajpurkar et al. [1], were interested in using model properties such as
DenseNet to maximize accuracy, while Ayan and Ünver [4], prioritized efficiency onmobile devices
and opted for lighter models. The works of Nikhade et al. [2], used large-scale, varied datasets,
while the studies of Liang and Zheng [5], focused on improving image quality to increase diagnostic
accuracy. Stephen et al. [3], have studied the impact of various hyperparameter optimization
techniques to improve the generalization ability of models.

This work aims to compare different pre-trained convolutional neural network architectures (Mo-
bileNetV2, ResNet-50, DenseNet121 and DenseNet201) to classify chest X-rays into three cat-
egories: bacterial pneumonia, viral pneumonia and normal cases. The research identifies Mo-
bileNetV2 as the optimal model in terms of accuracy and computational efficiency, adapting it
for implementation in an intelligent system designed for hardware-constrained environments. This
web-based system, developed in Django (frontend and backend in Python), allows pulmonologists
to register, manage patients and upload new X-rays to obtain automatic and fast diagnoses. Each
prediction is accompanied by a heat map generated using Grad-CAM, which visually highlights the
areas of interest in the image, providing an additional interpretation for the specialist. This approach
not only optimizes diagnostic accuracy and efficiency in areas with fewer technological resources,
but also contributes to the early detection of pneumonia, facilitating access to advanced diagnostic
tools in healthcare settings globally.
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2. THEORETICAL FRAMEWORK

Convolutional neural networks are used in pneumonia detection for their ability to extract complex
features from images. enables highly accurate and automated diagnosis that previously required
manual intervention [6].

2.1 MobileNet Algorithm

It is a convolutional neural network designed to be efficient on mobile devices and computer vision
tasks. It introduces residual inversion blocks, which combine depthwise and pointwise convolutions
to reduce computational complexity. It also uses ResNet-style skip connections, which facilitates the
training of deep networks [7]. Furthermore, it is designed to be lightweight and scalable, allowing its
size and complexity to be adjusted using a width parameter, making it suitable for resource-limited
environments, offering a good balance between accuracy, speed and energy consumption [8].

Below is a table showing some of the applications with MobileNet:

Table 1: Literature on MobileNet applications

Application Dataset Findings Author

Classification of
skin diseases

PH2,
HAM10000,
DermNet, ISIC

MobileNetV2 with attention and ASPP modules
achieves 98.6% accuracy in classifying skin
diseases.

[7]

Classification of
remote sensing
images

54, 306 images MobileNetV2 pre-trained on ImageNet, together
with dehazing and transfer learning, improves
the accuracy of remote sensing image
classification.

[8]

Classification of
bird species in
wetlands

ImageNet
(14M images)

MobileNetV2 achieves an F1-score of 0.789,
outperforming VGG16 and approaching
ResNet50, with a smaller model suitable for
resource-constrained devices.

[9]

Face and
landmark
detection

32, 203 images MobileNetV2 with feature pyramids and context
modules exceeds 90% accuracy on WIDER
FACE, proving its effectiveness under
challenging conditions.

[10]

Source: The authors

TABLE 1 shows thatMobileNetV2, combinedwith advanced techniques such as attention and trans-
fer learning, significantly improves accuracy in various applications such as disease classification,
remote sensing images, bird species, and face detection.
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2.2 ResNet Algorithm

ResNet, also known as Residual Network, is a deep learning framework for the task of image
recognition. The core idea of ResNet is to recast the layers of a neural network as residual functions,
using “shortcut connections” that allow the model to learn the difference between the desired output
and the current output of each layer. This deepening capability increases the accuracy of the model
by capturing more complex details in images, which is valuable in pneumonia diagnosis [11]. These
deep networks are effective on large volumes of data due to their high number of parameters and
complex structure, making it easier for them to detect advanced features and patterns in the data
[12].

Below, TABLE 2 will show some of the applications with ResNet:

Table 2: Literature on applications with ResNet

Application Dataset Find Author

Traditional Chinese
Medicine

48 people It allows to distinguish and recognize the
difference between a Qi-deficient constitution
and a balanced one.

[13]

Brain age
prediction

6400 images Experimental results indicate that the proposed
architecture demonstrates versatility and
robustness, achieving high accuracy and a lower
number of parameters.

[12]

Detection and
classification of
eyelid tumors

728 images Improves efficiency and accuracy in the
segmentation of pathological tumors, reaching
accuracies of up to 96.8%.

[14]

Segmentation and
classification of
glioblastoma
tumors

372 images The ResNet-SVM method achieved 89.36%
accuracy, 92.52% specificity, and 90.12%
precision in classifying glioblastoma tumors,
outperforming current methods.

[15]

Source: The authors

2.3 DenseNet121 Algorithm

DenseNet121 employs a dense connectivity architecture that optimizes information propagation in
deep networks. Each layer receives the output of all previous layers, facilitating a robust gradient
flow and reducing feature redundancy, allowing the model to extract detailed information from
medical images. DenseNet121, being more compact compared to DenseNet201, is particularly
suitable for applications in clinical settings where the balance between accuracy and computational
efficiency is important [16]. Although it is also commonly used in computer vision applications,
such as medical image classification, due to its high performance and ability to work with fewer
parameters than other traditional deep networks [17].

Below is TABLE 3, showing some of the applications of DenseNet121:
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Table 3: Literature on applications with DenseNet121

Application Dataset Find Author

Hyoid bone sex
prediction

3990 images The DenseNet121 deep learning model
achieved 89% accuracy in predicting sex
from the hyoid bone.

[17]

Diagnosing COVID-19
disease based on
gravitational search
optimization

5811 images GSA-DenseNet121-COVID-19 achieved
98.38% accuracy in classifying chest X-ray
images for COVID-19 detection.

[18]

Social media review
search and product
recommendation
scheme

2033 reviews A 92.22% accuracy was achieved in
recommending relevant products on a
social network

[19]

Breast cancer
classification from
mammography images

7909 images The DenseNet121+elm model achieved an
accuracy of 99.47% and 99.14% in training
and testing accuracy, respectively.

[20, 21]

Source: The authors

2.4 DenseNet201 Algorithm

With a deeper architecture than DenseNet121, DenseNet201 offers greater feature extraction capa-
bilities by including more layers in its dense connectivity structure. This increased depth enables
capturing complex patterns and fine details in images, which is beneficial in diagnostic tasks that
require high sensitivity, such as pneumonia detection in X-rays. DenseNet201, although more com-
putationally demanding, is highly effective in applications where diagnostic accuracy is a priority
[16].

Below is TABLE 4, showing some of the applications of DenseNet201:

2.5 Web Applications and Heat Maps

The integration of convolutional neural networks (CNN) into web applications for pneumonia di-
agnosis has proven to be an effective tool to improve access and accuracy in the detection of this
pathology. Recently, a CNN-based model implemented in a web application was developed that
allows the upload of X-ray images and returns an automated diagnosis of pneumonia, achieving
significant accuracy and facilitating access to rapid diagnosis in areas with limitations of specialized
resources [22]. This type of platform not only speeds up the diagnostic process but also allows
medical professionals to access detailed image analysis without the need for advanced equipment
at each location [23].

Another study implemented an automated diagnostic system using a pre-trained CNN model and
presenting the results with visual support using Grad-CAM heatmaps. This method highlights the
relevant areas of the radiograph that the model focuses on for diagnosis, providing the user with
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Table 4: Literature on applications with DenseNet201

Application Dataset Find Author

Classification of
microstructure images
based on the division
of non-fixed size
patches

5080 images The NFSDense201 model achieved 99.53%
accuracy for four-class classification and
97.09% for ten-class classification on SEM
images, outperforming previous models.

[24]

Classification of
dermatoscopy images

25331 images It showed good performance in classifying skin
lesions, and its classification ability was
further improved by integrating synthetic
images generated by the SLA-StyleGAN
model proposed in the study.

[25]

Differentiation of breast
lesions in dynamic
contrast-enhanced
MRI

4260 images The S2 strategy improves the robustness of the
DenseNet201 model on small sets of breast
DCE-MRI, optimizing the accuracy in
discriminating between benign and
malignant lesions.

[26]

Computer-assisted
diagnosis of laryngeal
cancer

13721 images The sensitivity of the model was 73.1% and the
specificity was 92.2% for detecting laryngeal
cancer and laryngeal precancerous lesions.

[27]

Source: The authors

a visual interpretation that helps validate the accuracy of the prediction. This approach reinforces
user trust in the system by offering greater transparency and understanding of the diagnostic pro-
cess, which is crucial in clinical contexts [28]. The choice of CNN is due to its ability to process
complex images and detect patterns that would otherwise require extensive review by specialists.
Furthermore, the use of CNN allows for efficient automation in diagnosis, which is beneficial in
resource-limited healthcare contexts [23].

Recent advances in medical imaging have incorporated lightweight and transformer-based models
with notable success. For instance, EfficientNet and ViT (Vision Transformers) have been used
to classify chest X-rays and CT scans with high accuracy and reduced computational cost. These
models, when combined with attention mechanisms or hybrid encoders, show strong potential to
improve diagnostic performance in detecting pneumonia and other thoracic diseases. Such models
represent a promising alternative to traditional CNNs in future research [27].

3. METHODOLOGY

3.1 Design Description

The model developed for pneumonia detection is based on the architecture of a pre-trained model,
which acts as a convolutional base and is complemented by a classifier optimized for the task of
classifying X-ray images (see FIGURE 1).
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Figure 1: Architecture of a pre-trained model applying Transfer Learning techniques
Source. Adapted from Corona-Nidaan: lightweight deep convolutional neural network for chest
X-Ray based COVID-19 infection detection

3.1.1 Convolutional basis

MobileNetV2, ResNet-50, DenseNet121, and DenseNet201 were selected as pre-trained models
for classifying X-ray images into bacterial, viral, and normal pneumonia categories. Each model
features characteristics in its base architecture that optimize its performance in extracting relevant
features, which is essential for medical image analysis.

3.1.2 Dense layers and normalization

The classifier has a global pooling layer, followed by a dense layer with 1024 neurons activated
by the ReLU function and a softmax layer that allows the final classification into three categories:
bacterial pneumonia, viral pneumonia and normal cases [29].

3.1.3 Hyperparameter configuration:

The initial learning rate is 0.001 and the batch size is 32, set to optimize learning on the chest imaging
dataset. The learning rate is adjusted by a factor of 0.5 when no improvement in validation accuracy
is observed in two consecutive epochs, thus optimizing the generalization ability of the model [29].
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3.1.4 Regularization and overfitting prevention

To mitigate overfitting, a dropout layer (rate: 0.4) was added to prevent overfitting, along with
an L2 regularization in the dense layers. Additionally, an early stopping strategy is applied if no
significant improvements in accuracy are observed after 3 epochs [29].

3.1.5 Data augmentation and transfer learning

For image processing and model training in this project, several advanced deep learning tech-
niques were used. First, data augmentation was implemented using transformations such as rotation,
scaling, and brightness adjustments, to increase the diversity of the training images and reduce
the risk of overfitting. Additionally, transfer learning was applied using pre-trained models on
large datasets, which were specifically fine-tuned for pneumonia diagnosis, optimizing the training
process and improving the overall performance of themodel. Finally, regularization techniques such
as dropout and batch normalization were incorporated, which help prevent overfitting and improve
the generalization ability of the model on new data [30].

3.2 Components and Materials Used

The main components and materials used in the development include:

3.2.1 Dataset

The model was trained and evaluated using the “Labeled Optical Coherence Tomography (OCT)
and Chest X-Ray Images for Classification” dataset by Kermany, Zhang, and Goldbaum, which
includes labeled X-ray images that allow classifying bacterial, viral, and normal pneumonia cases,
according to the Mendeley Data Standard, V2. The choice of this dataset is supported by its use
in multiple current investigations that highlight its effectiveness in training lung disease diagnostic
models [31].

3.2.2 Work environment

The model was implemented and trained on Kaggle notebooks, using libraries such as TensorFlow
and Keras for the optimization and execution of the convolutional neural network model in a deep
learning environment. In addition, the training processing capacity was accelerated using T4 X2
GPU hardware (320 Tensor cores, 2560 CUDA cores and 16 GB of GDDR6 memory).

In future work, we propose evaluating additional lightweight architectures such as EfficientNet,
ShuffleNet, and SqueezeNet. These models are known for offering high classification performance
with minimal computational requirements and could outperform MobileNetV2 in certain clinical
contexts, particularly in sensitivity to bacterial pneumonia.
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3.3 Development Procedure

The implementation and training of the model for pneumonia detection fromX-ray images followed
several organized steps, ensuring optimal performance in image processing and classification:

3.3.1 Preprocessing and data balancing

Initially, the data was organized into three sets: training, validation, and testing. The data was
balanced to avoid bias in the model, and each image was resized to 224x224 pixels (see FIGURE 2).

Figure 2: Image resizing.
Source: The authors

3.3.2 Data augmentation

Data augmentation techniques such as rotation, horizontal flipping and zooming were applied to
increase the sample variety and reduce overfitting. This procedure improves the generalization
capability of the model (see FIGURE 3).
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Figure 3: Image augmentation.
Source: The authors

3.3.3 Normalization

The images were normalized by dividing the pixel values by 255 to standardize the data and facilitate
model training. This step reduces variance and accelerates model convergence.

3.3.4 Transfer learning

The MobileNetV2 architecture pre-trained on ImageNet was used as a starting point, and adapted
to pneumonia-specific classification by adding custom dense layers. The upper layers were then
defrosted to fine-tune the weights based on the specific chest X-ray dataset.

3.3.5 Validation and testing

The model was evaluated using the validation and test data sets to measure its accuracy and avoid
overfitting. For this purpose, the ROC-AUC curve and the confusion matrix were used.
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3.3.6 Website

The website was developed using a Django project, which facilitated efficient management of
the models for the database created in SQL Lite, allowing for the generation of simple and fast
codes without complications. For the frontend, HTML, CSS and JavaScript were used, choosing
open source templates to achieve an attractive design. A login and registration system (sign-up)
was implemented with specific restrictions, which guaranteed proper management of users when
accessing the site. In addition, a functionality was included that allowed adding x-rays only after
10 days from the last upload, which was implemented to make it more realistic. The interfaces of
the developed website are shown below (See FIGURE 4 - FIGURE 8).

Figure 4: User registration form.
Source: The authors

Figure 5: Website login.
Source: The authors

3.4 Development Strategies

To organize and coordinate the work on this project, the agile Scrum methodology was used, with
a particular focus on the use of the product backlog. This tool allowed tasks to be prioritized and
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Figure 6: Form to add patients.
Source: The authors

Figure 7: Main view of patient data.
Source: The authors

Figure 8: View of disease detection in patient.
Source: The authors

managed efficiently, facilitating iterative development and allowing for continuous improvements
in each weekly sprint. Thanks to the product backlog (see TABLE 5), training strategies could be
adjusted as new needs or unexpected results arose. The focus on short sprints enabled constant
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review of the model and allowed additional techniques to be incorporated, such as hyperparameter
tuning and regularization implementation, to optimize model performance.

Table 5: Product backlog

Product Backlog

ID HU User Story Sprint Priority

HU001 As a pulmonologist, I want to allow uploading of patient X-ray
images to ensure the data is available for preprocessing.

Sprint 1 254

HU002 As a pulmonologist, I want to preprocess the uploaded X-ray
images to ensure the data is clean and ready to train a CNN
model.

Sprint 1 254

HU003 As a pulmonologist, I want to train a CNN model using the
preprocessed images to develop an efficient tool that can
automatically classify X-ray images.

Sprint 2 234

HU004 As a pulmonologist, I want to validate the trained CNN model
using the preprocessed images to ensure that the tool classifies
X-ray images accurately.

Sprint 3 210

4. VALIDATION AND TESTING

4.1 Functionality Testing

To verify the performance of the system, real chest X-ray data were used from the Labeled Optical
Coherence Tomography (OCT) and Chest X-Ray Images for Classification dataset by Kermany,
Zhang, and Goldbaum [31], which contains images classified into three categories: bacterial pneu-
monia, viral pneumonia, and normal. Using this set, the capabilities of the MobileNetV2, ResNet-
50, DenseNet121, and DenseNet201 models to correctly classify X-ray images into the established
categories were evaluated.

4.2 MobileNetV2 Implementation

The development of the key functionalities of this project was carried out using the Python program-
ming language, in conjunctionwith the TensorFlow andKeras libraries for the implementation of the
MobileNetV2 model. The development environment was Kaggle Notebooks, allowing the use of
GPUs for training and evaluating themodel. Themain functionalities included image preprocessing,
the application of data augmentation techniques, and the implementation of the transfer learning
model.

4.3 Tests

Various types of tests were carried out to ensure the functionality and effectiveness of the system:
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Functionality Testing

These tests focused on verifying the accuracy of the model in image classification. The ROC curve
and the confusion matrix were the main evaluation tools at this stage, obtaining results with a high
AUC, demonstrating the model’s capability for effective classification the three categories.

Performance Tests

Since the model was designed to run in resource-constrained environments, its performance was
evaluated in terms of inference time and memory consumption, to demonstrate that it is an efficient
and lightweight architecture, ideal for mobile deployments.

Usability Testing

It was validated that the model and code developed in Python and Keras were easily adaptable for
future modifications or implementations, allowing the hyperparameters to be adjusted and adapted
to new categories of medical image classification.

Overall, the results obtained in these tests indicate that the model is suitable for the detection of
pneumonia using chest X-rays and meets the accuracy, performance and usability requirements
defined in the project objectives.

5. RESULTS

5.1 Results Obtained

MobileNetV2: TheMobileNetV2model achieved an overall accuracy of 85% for classifying X-ray
images into three categories: bacterial pneumonia, viral pneumonia, and normal cases. According
to the classification report, the “Normal” class achieved an accuracy of 99%with a recall of 96% and
an f1-score of 0.97, indicating that the model accurately classifies this category. For the “Bacterial
Pneumonia” class, the model achieved an accuracy of 83%, although its recall was 70%, reflecting
a lower sensitivity for this category compared to “Normal.” The “Viral Pneumonia” class presented
an accuracy of 73% and a recall of 86%, with an f1-score of 0.79, showing moderate performance
in its detection. The overall performance of the model in terms of precision, recall, and f1-score
supports its adequate classification ability in all three categories (see TABLE 6).

Table 6: MobileNetV2 model results

Precision Recall F1-Score Support

Bacterial 0.83 0.70 0.76 500
Normal 0.99 0.96 0.97 500
Viral 0.73 0.86 0.79 500
Accuracy 0.84 1500
Macro avg 0.85 0.84 0.84 1500
Weight avg 0.85 0.84 0.84 1500
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The confusion matrix details (See FIGURE 9) the specific results of the MovileNetv2 model pre-
dictions:

Figure 9: Matrix of Confusion of the MobileNetV2 model using the ChestX test dataset.
Source: The authors

• For “Bacterial Pneumonia” cases, the model made 378 correct predictions, but misclassified
120 cases as “Viral” and 2 as “Normal.”

• In the “Normal” category, the model correctly predicted 479 cases, with only 3 false positives
as “Bacterial” and 18 as “Viral.”

• For “Viral Pneumonia” cases, the model correctly identified 419 cases but misclassified 69 as
bacterial pneumonia as “Bacterial” and 12 as “Normal.”

In terms of the model’s ability to differentiate between the three classes, the multiclass ROC curve
evaluation (see FIGURE 10) yielded an AUC of 0.91 for the “Bacterial” category, 0.99 for “Nor-
mal,” and 0.92 for “Viral.” These values indicate that the model has high classification accuracy,
especially in the “Normal” category, where the ROC curve reflects almost perfect discrimination.

To statistically validate the performance differences between models, we computed 95% confidence
intervals for classification accuracy and AUC scores. Additionally, we performed a two-tailed
paired t-test to assess significance, confirming that MobileNetV2 outperformed the other models
with p < 0.05.

The model was trained and evaluated for 20 epochs, and the model accuracy (see FIGURE 11)
and model loss (see FIGURE 12) graphs showed moderate improvement at each iteration, with
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Figure 10: Multiclass ROC curve of the MobileNetV2 model using the ChestX test dataset.
Source: The authors

progressive stability as the last epochs of the training process were reached. This suggests that
the model is converging properly and optimizing its classification ability throughout the training
process.

Figure 11: “Model Accuracy” of theMobileNetV2model using the ChestX training and test dataset.
Source: The authors

ResNet-50: The ResNet-50 model achieved an overall accuracy of 77% for classifying X-ray
images into three categories: bacterial pneumonia, viral pneumonia, and normal cases. According
to the classification report, the “Normal” class achieved an accuracy of 98%with a recall of 76% and
an f1-score of 0.86, indicating that the model accurately classifies this category. For the “Bacterial
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Figure 12: “Model Loss” of the MobileNetV2 model using the ChestX training and test dataset.
Source: The authors

Pneumonia” class, the model achieved an accuracy of 83%, although its recall was 32%, reflecting
a lower sensitivity for this category compared to “Normal.” The “Viral Pneumonia” class presented
an accuracy of 51% and a recall of 94%, with an f1-score of 0.46, showing poor performance in its
detection (see TABLE 7).

Table 7: ResNet-50 model results

Precision Recall F1-Score Support

Bacterial 0.83 0.32 0.56 500
Normal 0.98 0.76 0.86 500
Viral 0.51 0.94 0.66 500
Accuracy 0.67 1500
Macro avg 0.77 0.67 0.66 1500
Weight avg 0.77 0.67 0.66 1500

The confusion matrix (see FIGURE 13) details the specific results of the ResNet-50 model predic-
tions:

• For “Bacterial Pneumonia” cases, the model made 159 correct predictions but misclassified
335 cases as “Viral” and 6 as “Normal.”

• In the “Normal” category, the model correctly predicted 361 cases, with only 3 false positives
as “Bacterial” and 116 as “Viral.”

• For “Viral Pneumonia” cases, the model correctly identified 468, although it misclassified 29
cases as “Bacterial” and 3 as “Normal.”
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Figure 13: Confusion Matrix of the modelResNet-50Using the ChestX test dataset.
Source: The authors

In terms of the model’s ability to differentiate between the three classes, the multiclass ROC curve
evaluation (see FIGURE 14) yielded an AUC of 0.89 for the “Bacterial” category, 0.98 for “Nor-
mal,” and 0.88 for “Viral.” These values indicate that the model has high classification accuracy,
especially in the “Normal” category, where the ROC curve reflects almost perfect discrimination.

Figure 14: Multiclass ROC curve of ResNet-50 model using ChestX test dataset.
Source: The authors

The model was trained and evaluated over a total of 20 epochs, and the model accuracy (see FIG-
URE 15) and model loss (see FIGURE 16) graphs showed moderate improvement at each iteration,
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with progressive stability as the last epochs of the training process were reached. However, the
validation presents significant peaks that could indicate overfitting.

Figure 15: “Model Accuracy” of the ResNet-50 model using the ChestX training and test dataset.
Source: The authors

Figure 16: “Model Loss” of the ResNet-50 model using the ChestX training and test dataset.
Source: The authors

DenseNet201: The DenseNet201 model achieved an overall accuracy of 82% for classifying X-ray
images into three categories: bacterial pneumonia, viral pneumonia, and normal cases. According
to the classification report, the “Normal” class achieved an accuracy of 93%with a recall of 96% and
an f1-score of 0.94, indicating that the model accurately classifies this category. For the “Bacterial
Pneumonia” class, the model achieved an accuracy of 79%, although its recall was 74%, reflecting
a lower sensitivity for this category compared to “Normal.” The “Viral Pneumonia” class presented
an accuracy of 75% and a recall of 77%, with an f1-score of 0.76, showing poor performance in its
detection (see TABLE 8).

The confusion matrix (see FIGURE 17) details the specific results of the DenseNet201 model
predictions:

282



https://jaiai.org/ | July 2025 Luis Salazar, et al.

Table 8: DenseNet201 model results

Precision Recall F1-Score Support

Bacterial 0.79 0.74 0.76 500
Normal 0.93 0.96 0.94 500
Viral 0.75 0.77 0.76 500
Accuracy 0.82 1500
Macro avg 0.82 0.82 0.82 1500
Weight avg 0.82 0.82 0.82 1500

Figure 17: Confusion matrix of the DenseNet201 model Using the ChestX test dataset.
Source: The authors

• For “Bacterial Pneumonia” cases, the model made 369 correct predictions, but misclassified
113 cases as “Viral” and 18 as “Normal.”

• In the “Normal” category, the model correctly predicted 481 cases, with only 5 false positives
as “Bacterial” and 14 as “Viral.”

• For “Viral Pneumonia” cases, the model correctly identified 386, although it misclassified 94
cases as “Bacterial” and 20 as “Normal.”

In terms of the model’s ability to differentiate between the three classes, the multiclass ROC curve
evaluation (see FIGURE 18) yielded an AUC of 0.91 for the “Bacterial” category, 1.00 for “Nor-
mal,” and 0.90 for “Viral.” These values indicate that the model has high classification accuracy,
especially in the “Normal” category, where the ROC curve reflects almost perfect discrimination.

The model was trained and evaluated over a total of 20 epochs, and the model accuracy (see FIG-
URE 19) and model loss (see FIGURE 20) graphs showed moderate improvement at each iteration,
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Figure 18: Multiclass ROC curve of the DenseNet201 model using the ChestX test dataset.
Source: The authors

with progressive stability as the last epochs of the training cycle were reached. However, validation
during training presents significant peaks that could indicate overfitting.

Figure 19: “Model Accuracy” of the DenseNet201 model using the ChestX training and test dataset.
Source: The authors

DenseNet121: The DenseNet201 model achieved an overall accuracy of 82% for classifying X-ray
images into three categories: bacterial pneumonia, viral pneumonia, and normal cases. According
to the classification report, the “Normal” class achieved an accuracy of 93%with a recall of 97% and
an f1-score of 0.95, indicating that the model accurately classifies this category. For the “Bacterial
Pneumonia” class, the model achieved an accuracy of 77%, although its recall was 78%, reflecting
a lower sensitivity for this category compared to “Normal.” The “Viral Pneumonia” class presented
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Figure 20: “Model Loss” of the DenseNet201 model using the ChestX training and test dataset.
Source: The authors

an accuracy of 78% and a recall of 74%, with an f1-score of 0.76, showing poor performance in its
detection (see TABLE 9).

Table 9: DenseNet121 model results

Precision Recall F1-Score Support

Bacterial 0.77 0.78 0.77 500
Normal 0.93 0.97 0.95 500
Viral 0.78 0.74 0.76 500
Accuracy 0.83 1500
Macro avg 0.83 0.83 0.83 1500
Weight avg 0.83 0.83 0.83 1500

The confusion matrix (see FIGURE 21) details the specific results of the DenseNet121 model
predictions:

• For “Bacterial Pneumonia” cases, the model made 389 correct predictions, but misclassified
95 cases as “Viral” and 16 as “Normal.”

• In the “Normal” category, the model correctly predicted 484 cases, with only 4 false positives
as “Bacterial” and 12 as “Viral.”

• For “Viral Pneumonia” cases, the model correctly identified 371, although it misclassified 111
cases as “Bacterial” and 18 as “Normal.”

In terms of the model’s ability to differentiate between the three classes, the multiclass ROC curve
evaluation (see FIGURE 22) yielded an AUC of 0.92 for the “Bacterial” category, 0.99 for “Nor-
mal,” and 0.91 for “Viral.” These values indicate that the model has high classification accuracy,
especially in the “Normal” category, where the ROC curve reflects almost perfect discrimination.
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Figure 21: Confusion Matrix of the DenseNet121 model Using the ChestX test dataset.
Source: The authors

Figure 22: Multiclass ROC curve of the DenseNet121 model using the ChestX test dataset.
Source: The authors

The model was trained and evaluated over a total of 20 epochs, and the model accuracy (see FIG-
URE 23) and model loss (see FIGURE 24) graphs showed moderate improvement at each iteration,
with progressive stability as the last epochs of the training cycle were reached. However, the
validation during training presents a significant peak that could indicate overfitting.
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Figure 23: “Model Accuracy” of the DenseNet121 model using the ChestX training and test dataset.
Source: The authors

Figure 24: “Model Loss” of the DenseNet121 model using the ChestX training and test dataset.
Source: The authors

5.2 Model Performance

To optimize automated pneumonia diagnosis from X-rays, we evaluated the performance of sev-
eral CNN models, including MobileNetV2, ResNet-50, DenseNet121, and DenseNet201 (see TA-
BLE 10). The results obtained were compared with previous models reported in the literature to
determine whether theMobileNetV2model achieved similar or superior results in terms of accuracy
and AUC. The following table presents the performance metrics of each model, such as accuracy,
sensitivity, and specificity, obtained through transfer learning and fine-tuning techniques, which
allowed each architecture to be adapted to the characteristics of the dataset.
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Table 10: Performance of MobileNetV2, ResNet-50, DenseNet121, and DenseNet201

Model Precision Advantages

MobileNetV2 85% Efficiency in low-resource devices
ResNet-50 67% High accuracy in pattern detection
DenseNet121 83% Excellent generalization in medical data
DenseNet201 82% Maximum precision, although more computationally demanding

Statistical significance testing was conducted to confirm the differences observed among models.
Confidence intervals and p-values indicate that MobileNetV2 offers a statistically significant im-
provement over ResNet-50 and DenseNet201 in terms of overall accuracy (p < 0.05).

5.3 Interpretation of Results

The results obtained show that the MobileNetV2 model meets the objectives of classifying X-ray
images into three categories, being particularly efficient in detecting normal cases. Although the
performance in the “Viral Pneumonia” and “Bacterial” categories is adequate, the model could
benefit from higher sensitivity in detecting these cases to further improve its clinical applicability.
Overall, the high AUC values and overall accuracy of the model reflect its potential as a support
tool in the diagnosis of pneumonia in resource-limited settings.

6. DISCUSSION

6.1 Comparison with Other Works

Comparing these results with previous studies in the field, the MobileNetV2 model offers competi-
tive performance by maintaining high accuracy in a lightweight and efficient model. Studies such as
Rajpurkar et al. (2017), which uses the more complex DenseNet architecture, also show high levels
of accuracy, but with a higher requirement for computational resources, which limits its applica-
bility in limited hardware environments. In contrast, MobileNetV2 provides comparable accuracy,
with an implementation optimized for mobile devices and environments with less computational
capacity, making it ideal for diagnostic applications in low-resource areas.

Although MobileNetV2 presented lower sensitivity for bacterial pneumonia (70%), it was selected
due to its excellent balance between overall accuracy (84%), high AUC in the “Normal” category
(0.99), and computational efficiency. These advantages make it a strong candidate for deployment
in resource-limited settings, where access to advanced hardware is not feasible.

288



https://jaiai.org/ | July 2025 Luis Salazar, et al.

6.2 Recommendation for Future Improvements

To improve the performance and adaptability of the model in future studies, the following actions
are suggested:

• Advanced Data Augmentation Techniques: Using advanced generative transformations can
increase the variability of the dataset, improving the generalization capacity of the model in
diverse contexts.

• Fine-tuning Hyperparameters: Optimizing parameters such as learning rate and regularization
scheme through automatic tuning methods could further maximize the accuracy and general-
ization ability.

• EvaluatingAlternative Lightweight-EfficientModels: Exploring alternative architectures such
as EfficientNet could offer an improved balance between accuracy and computational effi-
ciency compared to MobileNetV2, better adapting to deployment environments.

• Validation on Larger and More Diverse Datasets: Expanding the dataset to include images
from different geographic regions and demographic characteristics could improve the robust-
ness and generalizability of the model across a wider range of clinical settings.

• One limitation of this study is the lack of a novel hybrid or custom architecture. Future research
could focus on developing ensemble models or hybrid frameworks combining convolutional
layers with attention mechanisms. Additionally, external validation using datasets from dif-
ferent clinical centers or geographical regions is recommended to improve robustness and
generalizability of the system. It is also advisable to include more advanced statistical testing
(e.g., t-tests, ANOVA) to determine the significance of differences acrossmodel performances.

These findings highlight the value of MobileNetV2 as an accessible diagnostic tool for pneumonia
detection and reinforce the importance of continuing to optimize its performance to maximize its
impact on healthcare in low-resource areas.

7. CONCLUSIONS

7.1 Summary of Achievements

The development of the pneumonia classification model using MobileNetV2 has successfully im-
plemented an efficient and accurate architecture for the detection of bacterial, viral pneumonia and
normal cases from chest X-rays. With an overall accuracy of 84% and a macro average accuracy of
85%, the model demonstrates high classification capability in resource-limited settings. High AUC
values were achieved, especially in the “Normal” category, with a value of 0.99, which validates
the effectiveness of the model. Additionally, the stability of the accuracy and loss plots throughout
training indicates that the model converges adequately and has a solid and consistent performance.

In future work, it is important to include external datasets collected from diverse clinical sources and
regions. This would help validate the model’s robustness in different population groups and real-
world hospital environments, addressing concerns about reliance on a single web-based dataset.
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7.2 Potential Applications

This model presents practical applications in the medical sector, specifically as a support tool in the
diagnosis of pneumonia in areas with limited access to advanced equipment and specialists. The
efficiency ofMobileNetV2, a lightweight architecture designed to run on low-power devices, makes
it suitable for mobile applications and telemedicine systems, providing healthcare professionals with
an accessible and reliable system for initial screening. Furthermore, this methodology could be
applied in other fields of diagnostic imaging, such as the identification of lung pathologies or cardiac
abnormalities in X-rays and CT scans, thus extending its impact in automated medical analysis.

7.3 Future Lines of Research

To expand and improve the performance of this project, the following lines of future research are
proposed:

7.3.1 Expansion of the dataset

Integrate a more diverse dataset with images from different geographic regions and demographic
characteristics to strengthen the model’s generalization ability across different populations.

7.3.2 Optimization of lightweight-efficient architectures

Evaluate and compare the performance of alternative architectures, such as EfficientNet and
SqueezeNet, which can offer competitive accuracy with lower resource consumption.
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