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Video Super Resolution (VSR) has emerged as a crucial task in the field of Computer Vision
due to its diverse applications. In this paper, we propose the Recurrent Back-Projection
Generative Adversarial Network (RBPGAN) for VSR, aiming to generate temporally coher-
ent videos while preserving spatial details. RBPGAN integrates two state-of-the-art models
to leverage their strengths without compromising the accuracy of the output video. The
generator in our model is inspired by the RBPN system, while the discriminator draws from
TecoGAN. Additionally, we employ a Ping-Pong loss to enhance temporal consistency over
time. Our approach results in a model that surpasses previous works in producing tempo-
rally consistent details, as demonstrated through both qualitative and quantitative evaluations
across different datasets.

Keywords: Video Super Resolution (VSR), Convolutional Neural Networks (CNNs), Gen-
erative Adversarial Networks (GANs), Temporal Coherence, Recurrent Projection.

1. INTRODUCTION

Video Super Resolution (VSR) is the process of generating High Resolution (HR) videos
from Low Resolution (LR) videos. Videos are one of the most common types of media
shared in our daily lives. From entertainment purposes like movies to security purposes
like surveillance camera footage, videos have become increasingly important. Consequently,
VSR has also gained significance. The need to modernize old videos or enhance security
camera footage to identify faces has become critical in recent years. VSR aims to enhance
the quality of videos to meet these needs.

Similar to VSR, but older, is Image Super Resolution (ISR), which involves generating a
single high-resolution image from a single low-resolution image. Since a video is essentially
a sequence of frames (images), VSR can be seen as ISR applied to each frame in the video.
While this analogy is useful because many ISR techniques can be slightly modified for VSR,
there are major differences between VSR and ISR. The main difference is the temporal
dimension in videos, which does not exist in images. The relationship between a frame in a
video and other frames in the sequence makes VSR more complex than ISR.

In this research, various VSR methods will be explored. These methods are mainly clus-
tered into two categories: methods with alignment and methods without alignment. We will
compare the different methods across various datasets and discuss the results. Among the
methods we studied, we chose two models as the base models for our research. We further
explore these base models and conduct experiments with them.

This paper aims to minimize the trade-off between temporal coherence and the quality of
VSR. To achieve this, we propose a Generative Adversarial Network (GAN) that combines
components from each of the base models to achieve the best of both worlds. Our method-
ology, experimentation, and results are presented in the following sections. Finally, we
conclude the paper and propose future recommendations for further research.
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2. RELATEDWORK

Based on our review of the literature, Deep Learning-based methods targeting the Video
Super Resolution problem can be divided into two main categories: methods with alignment
and methods without alignment. Alignment means that the input LR video frames should be
aligned before being fed into the model. Within the methods with alignment, existing models
can be divided into two sub-categories: methods with Motion Estimation and Motion Com-
pensation (MEMC), and methods with Deformable Convolution (DC). Within the methods
without alignment, existing models can be divided into four sub-categories: 2D convolution,
3D convolution, RNNs, and Non-Local based methods. In this section, the state-of-the-art
methods belonging to each category will be discussed.

2.1 Methods with Alignment

2.1.1 Motion Estimation and Motion Compensation (MEMC)

First, the Temporally Coherent Generative Adversarial Network (TecoGAN) [1], The net-
work proposes a temporal adversarial learning method for a recurrent training approach that
can solve problems like Video Super Resolution, maintaining the temporal coherence and
consistency of the video without losing any spatial details, and without resulting in any
artifacts or features that arbitrarily appear and disappear over time. The TecoGAN model
is tested on different datasets, including the widely used Vid4, and it is compared to the
state-of-the-arts ENet, FRVSR, DUF, RBPN, and EDVR. TecoGAN has significantly less
trainable weights than RBPN and EDVR. It scores PSNR of 25.57, and its processing time
per frame is 41.92 ms. TecoGAN is able to generate improved and realistic details in both
down-sampled and captured images.However, one limitation of the model is that it can lead
to temporally coherent yet sub-optimal details in certain cases such as under-resolved faces
and text.
Second, the recurrent back-projection network (RBPN) [2]. This architecture mainly consists
of one feature extraction module, a projection module, and a reconstruction module. The
recurrent encoder-decoder module integrates spatial and temporal context from continuous
videos. This architecture represents the estimated inter-frame motion with respect to the
target rather than explicitly aligning frames. This method is inspired by back-projection for
MISR, which iteratively calculates residual images as reconstruction error between a target
image and a set of its corresponding images. These residual blocks get projected back to the
target image to improve its resolution. This solution integrated SISR and MISR in a unified
VSR framework as SISR iteratively extracted various feature maps representing the details of
a target frame while the MISR were used to get a set of feature maps from other frames. This
approach reported extensive experiments to evaluate the VSR and used the different datasets
with different specs to conduct detailed evaluation of strength and weaknesses for example it
used theVid4, and SPMCSwhich lack significantmotions. It proposes an evaluation protocol
for video SR which allows to differentiate performance of VSR based on the magnitude of
motion in the input videos. It proposes a new video super-resolution benchmark allowing
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evaluation at a large scale and considering videos in different motion regimes.

2.1.2 Deformable Convolution methods (DC)

The Enhanced Deformable Video Restoration (EDVR) [3], model was the winning solution
of all four tracks of the NTIRE19 competition. In addition, outperformed the second-best
solution. Also, this solution performed better when compared to some of the state-of-the-
art solutions. EDVR is a framework that performs different video super-resolution and
restoration tasks. The architecture of EDVR is composed of two main modules known Pyra-
mid, Cascading, and Deformable convolutions (PCD) and Temporal and Spatial Attention
(TSA). EDVR was trained on the REDS dataset, which contains 240 training videos and 60
videos divided equally for validation and testing. Each video in the REDS dataset is a 100
consecutive frame short clip.

2.2 Methods Without Alignment

2.2.1 2D convolution

Generative adversarial networks and perceptual losses for video super-resolution [4]. The
model uses a GAN to generate high-resolution videos. The generator and the discriminator in
the GAN consist both of many convolutional layers and blocks. The generator first generates
a high-resolution frame, and the discriminator decides whether the output from the generator
is a generated frame or a ground-truth (GT) image. If the discriminator decides it is a
generated frame, then the generator uses the output of the discriminator to generate a better,
closer to GT, high-resolution frame. The process is then repeated multiple times until the
discriminator accepts the output of the generator as a GT image.

2.2.2 3D convolution

The dynamic filter network can generate filters that take specific inputs and generate corre-
sponding features. The dynamic upsampling filters (DUF) [5], use a dynamic filter network
to achieve VSR. The structure of the dynamic upsampling filter and the spatio-temporal infor-
mation learned from the 3D convolution led to a comprehensive knowledge of the relations
between the frames. DUF performs filtering and upsampling operations and uses a network
to enhance the high-frequency details of the super-resolution result.
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2.2.3 RCNNS

RCNNS is a very powerful network [6], developed a stochastic temporal convolutional net-
work (STCN) by incorporating a hierarchy of stochastic latent variables into TCNs, allowing
them to learn representations over a wide range of timescales. The network is divided into
three modules: spatial, temporal, and reconstruction. The spatial module is in charge of
extracting features from a series of LR frames. Temporalmodule is a bidirectionalmulti-scale
convoluted version Motion estimation of LSTM that is used to extract temporal correlation
between frames. The latent random variables in STCN are organized in accordance with the
temporal hierarchy of the TCN blocks, effectively spreading them across several time frames.
As a result, they generated a new auto-regressive model that combines the computational
advantages of convolutional architectures with the expressiveness of hierarchical stochastic
latent spaces. The model in STCN is meant to encode and convey information across its
hierarchy.

2.2.4 Non-Local methods

There is a progressive fusion network for vSR that is meant to make greater use of spatio-
temporal information that has shown to be more efficient and effective than existing direct fu-
sion, slow fusion, and 3D convolution techniques through a technique known as Progressive
Fusion Video Super-Resolution Networks in Exploiting Non-Local Spatio-Temporal Corre-
lations (PFNL). This is presented in Progressive Fusion Video Super-Resolution Network via
Exploiting Non-Local Spatio-Temporal Correlations [7]. That enhanced the non-local oper-
ation in this progressive fusion framework to circumvent the MEMC methods used in prior
VSR techniques.This was done by adding a succession of progressive fusion residual blocks
(PFRBs). The suggested PFRB is designed tomake greater use of spatiotemporal information
from many frames. Furthermore, the PFRB’s multi-channel architecture allows it to perform
effectively even with little parameters by employing a type of parameter sharing technique.
That created and enhanced the non-local residual block (NLRB) to directly capture long-
range spatiotemporal correlations. So, this can be summarized into three major components:
a non-local resblock, progressive fusion residual blocks (PFRB), and an upsampling block.
The non-local residual blocks are used to extract spatio-temporal characteristics, and PFRB
is proposed to fuse them. Finally, the output of a sub-pixel convolutional layer is added to
the input frame, which is then upsampled using bicubic interpolation to produce the final
super-resolution results.

3. Our Model and Contribution

This paper proposes a Generative Adversarial Network that combines the generator of RBPN
to achieve high accuracy and the discriminator of TecoGAN to improve temporal coherence,
while reducing model size.
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Figure 1: RBPN Architecture

3.1 RBPN

The Recurrent Back Projection Network calculates residual images as the reconstruction
error between the target image and a set of six neighboring frames, exploiting temporal
relationships between adjacent frames [2]. The network mainly consists of three modules:
a feature extraction module, a projection module, and a reconstruction module, as shown in
FIGURE 1.

The feature extraction module performs two operations: it extracts features directly from
the target frame and from the concatenation of the neighboring frames, and calculates the
optical flow from the neighboring frames to the target frame. The projection module consists
of an encoder and a decoder. The encoder is composed of multiple image super-resolution
(MISR), single image super-resolution, and residual blocks. The decoder consists of a strided
convolution and a residual block. The decoder takes the output of the previous encoder to
produce the LR features, which are then fed to the encoder of the next projection module.
The reconstruction module takes the output of the encoder from each projection module,
concatenates them, and produces the final SR results.

RBPN is specifically chosen as the generator for the proposed network because it contains
modules that jointly use features across layers, known as back-projection [2]. It offers supe-
rior results by combining the benefits of the original MISR back-projection approach with
Deep Back-Projection Networks (DBPNs), which perform SISR by estimating the SR frame
using the LR frame through learning-based models. Combining these two techniques results
in superior accuracy produced by the RBPN network [8, 9].

3.2 TecoGAN

In this network, the generator, denoted by G, generates high-resolution (HR) frames from
low-resolution (LR) input frames. It takes the LR frames and the previously estimated HR
frames as inputs and feeds them into the motion estimation module to obtain the optical
flow. The optical flow is then used to warp the previous HR frames, which are fed into
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convolutional modules to generate the HR frame [1]. The discriminator, denoted by D, is
spatio-temporal based and its main role is to compare the generated HR frames with the
ground truth.

This network also proposes a new loss function named ”Ping-Pong,” which focuses on the
long-term temporal flow of the generated frames to make the results more natural without
artifacts. Additionally, it has a relatively low number of parameters for a GAN network,
approximately 3 million parameters, resulting in an inference time of around 42 ms [1]. The
discriminator guides the generator to learn the correlation between the LR input and the
HR targets. It penalizes the generator if the generated frames contain less spatial detail or
unrealistic artifacts compared to the target HR and the original LR frames. The architecture
of the discriminator is shown in FIGURE 2.

Figure 2: Discriminator Architecture

There is an issue that appears when super-resolving at large upscaling factors, which is
usually seen with CNNs [10]. Therefore, the proposed network chose TecoGAN as a dis-
criminator to mitigate the issue of a lack of finer texture details. The discriminator is trained
to differentiate between super-resolved images and original photo-realistic images.

RBPN is specifically chosen as the generator for the proposed network because it contains
modules that jointly use features across layers, known as back-projection [2]. It offers supe-
rior results by combining the benefits of the original MISR back-projection approach with
Deep Back-Projection Networks (DBPNs), which perform SISR by estimating the SR frame
using the LR frame through learning-based models.

Our proposed architecture, called RBPGAN, combines the strengths of RBPN and Teco-
GAN as the generator and discriminator, respectively. The main goal is to recover precise
photo-realistic textures andmotion-based scenes from heavily down-sampled videos, thereby
improving temporal coherence while reducing model size. The architecture of the proposed
network is shown in FIGURE 1.
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Figure 3: RBPGAN Architecture

4. DATASETS AND METRICS

4.1 Datasets

We conducted our training experiments using the Vimeo-90k dataset and the training dataset
created by TecoGAN publishers, referred to as VimeoTecoGAN. For testing, we utilized
the Vid4 and ToS3 datasets, with detailed descriptions available in TABLE 1. To generate
the low-resolution (LR) frames from high-resolution (HR) input frames during training, we
applied 4x down-sampling using bicubic interpolation, also known as the Gaussian Blur
method. This approach enabled self-supervised learning by automatically creating input-
output pairs without human intervention.

For testing, we obtained comparable assessment results on the Tears of Steel datasets (ToS3
scenes: room, bridge, and face) alongside the Vid4 dataset. To ensure consistency across
all methods, we followed the procedures outlined in previous works [5, 11]. Specifically, we
excluded spatial borders within 8 pixels of the image sides, adjusted the borders to ensure the
LR input image was divisible by 8, and disregarded the first and last few frames for spatial
and temporal metrics (first two and last two frames for spatial metrics, and first three and last
two frames for temporal metrics) to accommodate inference requirements.

Additionally, we experimented with our own LR video sessions focusing on bodily motions.
When comparing these sessions to other datasets and metric breakdowns, we found that our
measures effectively captured human time perception.

4.2 Evaluation Metrics

While the visual results offer a first indication of the quality of our technique, quantitative
assessments are critical for automated evaluations over greater numbers of samples. Because
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Table 1: Details of the datasets used in the experiments.

Dataset Resolution #clips Frames/clip#Frames
Vimeo90K 448x256 13,100 7 91,701
VimeoTecoganVaries 265 120 31,800
Vid4 Varies 4 Varies 684
ToS3 1280x534 3 233,

166,
150

549

ground-truth data is available, we will concentrate on the VSR assignment in this section. We
give metrics evaluations of several models in relation to existing geographical metrics. We
also justify and suggest two new temporal metrics for measuring temporal coherence. The
usual criterion for evaluating the quality of super-resolution results mainly includes Peak
signal-to-noise ratio (PSNR) and Structural index similarity (SSIM). PSNR is the ratio of an
image’s maximum achievable power to the power of corrupting noise that affects the quality
of its representation. To calculate the PSNR of a picture, it must be compared to an ideal
clean image with the highest potential power. Higher outcomes are preferable. A single SR
frame’s PSNR can be calculated as

𝑃𝑆𝑁𝑅 = 10𝑙 (𝑀𝐴𝑋2

𝑀𝑆𝐸
) (1)

where MAX is the color value’s maximum range, which is commonly 255 and MSE is the
mean squared error. Generally, a greater PSNR value indicates higher quality. While SSIM
measures the similarity of structure between two corresponding frames using an uncom-
pressed or distortion-free image as a baseline. A higher SSIM value indicates higher quality.
PSNR may be more sensitive to Gaussian noise, whereas SSIM may be more sensitive to
compression errors. Their values, however, are incapable of reflecting video quality for
human vision. That implies, even if a video has a very high PSNR value, it may still be
unpleasant for humans. As a result, deep feature map-based measures like LPIPS [12], can
capture more semantic similarities. The distance between picture patches is calculated using
LPIPS (Learned perceptual image patch similarity). Higher implies more distinct. Lower
values indicate a closer match.LPIPS indicates the perceptual and semantic similarity to the
ground truth. In other words, lower LPIPS means a more natural video. Additionally, ToF is
used to calculate the pixel-wise difference of movements inferred from successive frames.

𝑡𝑂𝐹 = | |𝑂𝐹 (𝑏𝑡−1, 𝑏𝑡 ) −𝑂𝐹 (𝑔𝑡−1, 𝑔𝑡 ) | | (2)

5. LOSS FUNCTIONS

The loss functions used while training our model are as follows:

1. GAN Loss (min-max loss):
We use the Vanilla GAN loss, which is the simplest form of the GAN loss, for the adversarial
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training. The generator tries to minimize it while the discriminator tries to maximize it.

Eqn.1

Here, 𝐷 (𝑥) is the discriminator’s estimate of the probability that real data instance x is real,
and 𝐷 (𝐺 (𝑧)) is the discriminator’s estimate of the probability that a fake instance is real. E is
the expected value over all data instances.

2. Pixel loss:
Minimizes the pixel-wise squared differences between Ground Truth and generated frames.

Eqn.2

3. Ping Pong Loss:
Proposed by TecoGAN model, effectively avoids the temporal accumulation of artifacts, and
targets generating natural videos that are consistent over time. PP loss uses a sequence of
frames with the forward order as well as its reverse. Using an input number of frames of length
n, we can form a symmetric sequence 𝑎1, ...𝑎𝑛−1, 𝑎𝑛, 𝑎𝑛−1, ...𝑎1 such that when feeding it to
the generator, the forward results should be identical to the backward result [1].

Eqn.3

Here, the forward results are represented with 𝑔𝑡 and the backward results with 𝑔𝑡
′

4. Feature/perceptual Loss:
Encourages the generator to produce features similar to the ground truth ones by increasing
the cosine similarity of their feature maps. It ensures more perceptually realistic and natural
generated videos. Our discriminator features contain both spatial and temporal information
and hence are especially well suited for the perceptual loss.

Eqn.4

Where 𝐼𝑔 = {𝑔𝑡−1, 𝑔𝑡 , 𝑔𝑡+1}, 𝐼𝑏 = {𝑏𝑡−1, 𝑏𝑡 , 𝑏𝑡+1}

5. Warping Loss:
Used while training the motion estimation network (F) that produces the optical flow between
consecutive frames.
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Eqn.5

Where 𝑊 () is the warping function, 𝐹 () is the flow estimator, and 𝑎𝑡 is the LR frame in
position 𝑡.

6. EXPERIMENTS

During the training process, GANs’ generative and discriminative models interact with each
other to achieve greater perceptual quality than other standard models. As a result, GANs are
widely used in the field of Super Resolution. To handle large-scale and unknown degradation
difficulties in VSR tasks, we rely on the remarkable ability of GAN models’ deep feature
learning. We also refer to the TecoGAN method’s design and introduce the spatio-temporal
adversarial structure to aid the discriminator’s understanding and learning of the distribution
of spatio-temporal information, avoiding the instability impact in the temporal domain that
standard GANs suffer from. Additionally, we introduce a more accurate generator module
based on the RBPN model into the TecoGAN design to ensure quality and improve temporal
coherence.

In all our experiments, we focus on the 4× Super Resolution factor as it provides satisfactory
results and requires a reasonable amount of training. We used a crop size of 32x32 and
Gaussian downsampling. All experiments were conducted using the following specifications
to enable the dense nature of the training phase: 64GB of DDR4 RAM, 2.80GHz Intel Core
i9-10900F CPU, NVIDIA GeForce RTX 3090 (1 x 24 GB) GPU, and Ubuntu 20.04.3 LTS
operating system.

We will now present and explain the experiments we conducted in sequence and later discuss
their results comparatively.

First, we started by training and testing our two base models (TecoGAN and RBPN) to ensure
their correctness and reliability before integrating them to produce our model. Then, we
integrated them as discussed in Section 2. Subsequently, we performed experiments on our
model with different parameters, loss functions, etc., until we reached the best outcome. The
final model is then compared with other state-of-the-art models in terms of PSNR, SSIM,
LPIPS, and ToF metrics.

1. Experiment 1: Reduced RBPN Model Size
As discussed, RBPN is the base model we are using for our model’s generator. We started by
training and testing it. The model size was very large, and we encountered memory-related
issues, so we reduced its size by decreasing the number of neighbor frames passed to the
projection modules. This resulted in a decreased size and resolved our problems. The training
of this experiment took around 1 hour per epoch, and we trained it for 150 epochs using the
VimeoTecoGAN dataset and other parameters as in the original published model.

2. Experiment 2: Lightweight TecoGAN
We trained and tested the TecoGAN model, which demonstrated adequate results with fewer
parameters compared to other state-of-the-art models. We used one GPU for the first training
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experiment of TecoGAN implemented using the TensorFlow framework. The results were en-
couraging, but the training took more than 170 hours to complete. Therefore, we restructured
the network to be more lightweight and less computationally dense. The new implementation
provides a model with a smaller size and better performance than the official TecoGAN imple-
mentation, as shown in TABLE 2. We also trained it using a more computationally powerful
machine (with a 24GB GPU), and the results show that the reduced model has less training
time than the official implementation by a factor of 6.7x. This implementation was done using
the PyTorch framework to make it compatible with RBPN in the integration phase.

Table 2: Comparison between Official TecoGAN implementation and reduced model performance.

Methods PSNR SSIM tOF (x10) tLP (x100) LPIPS (x10) Processing
time
(ms/frame)

Official TecoGAN 25.57 - 1.897 0.668 1.623 41.92
Lightweight Teco-
GAN

26.030 0.802 0.199 0.510 0.156 41.92

3. Experiment 3: Model Integration
After ensuring the correctness, reliability, and readiness of the two base models for the integra-
tion phase, we began integrating RBPN as the generator with the spatio-temporal discriminator
fromTecoGAN to create our GANmodel and prepare it for some experiments. The integration
was challenging due to many differences in functions’ interfaces, dependencies used, training
datasets, and the lack of generalization to fit any other dataset, as well as the coding style.
We experimented in two ways: replacing the existing generator of TecoGAN with RBPN
in the TecoGAN environment, and adding the spatio-temporal discriminator of TecoGAN to
RBPN, transforming a feed-forward model to a generative model. After solving all issues, we
produced our model: RBPGAN - Recurrent Back Projection Generative Adversarial Network.

We will now discuss the experiments done on RBPGAN (our model) to monitor the model’s
potential and test our hypothesis.

1. Experiment 4.1
We used all the loss functions mentioned in the previous section (Ping Pong loss, Pixel loss,
Feature loss, Warping loss, and GAN loss). We used 2 neighbor frames per frame, but due to
the use of ping pong loss, this number is doubled to create the backward and forward paths.
Therefore, the generator used 4 neighbor frames per frame. We trained both the generator and
discriminator simultaneously from the beginning, using the VimeoTecoGAN dataset. Training
took around 3.5 days using the specifications mentioned.

2. Experiment 4.2
We used the same loss functions as in Experiment 4.1, except the Ping Pong loss, to observe its
effect on the results. We used 3 neighbor frames per frame, started the training of the generator
and discriminator together, and used the same dataset and other parameters as in Experiment
4.1. The training took around 3 days.

3. Experiment 4.3
This experiment is the same as Experiment 4.2, except that we first trained the generator solely
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for some epochs and then started the training of the GAN using this pre-trained part. The
training took around 3 days using the same dataset, number of neighbors, and other parameters.

4. Experiment 5
We trained the RBPN model with the same number of neighbors, crop size, dataset, and other
unifiable parameters as we did for our model in the previous experiments to ensure a fair
comparison between it and our model.

7. RESULTS

In this section, we present the results and metrics evaluation of our conducted experiments.
The performance of our model is assessed using the Peak Signal-to-Noise Ratio (PSNR),
Learned Perceptual Image Patch Similarity (LPIPS), temporal Optical Flow (tOF), and Struc-
tural Similarity Index Measure (SSIM) metrics across different datasets.

TABLE 3 provides a comparative analysis of the experiments conducted on theVid4 dataset.
The results indicate that Experiment 4.2 achieved the best performancewith a PSNR of 25.74,
an LPIPS of 1.44, a tOF of 2.35, and an SSIM of 0.762, outperforming the other experiments
in all metrics.

Similarly, TABLE 4 shows the results for the ToS3 dataset. In this case, Experiment 4.1
achieved the highest PSNR of 32.89, while Experiment 4.2 demonstrated superior perfor-
mance in terms of LPIPS, tOF, and SSIM metrics, with values of 0.69, 1.64, and 0.880,
respectively.

Table 3: Comparative analysis between all conducted experiments on our model for the Vid4
dataset.

Metric
Name

Experiment
4.1

Experiment
4.2

Experiment
4.3

PSNR 25.58 25.74 25.56
LPIPS 1.47 1.44 1.45
tOF 2.46 2.35 2.40
SSIM 0.756 0.762 0.751

Table 4: Comparative analysis between all conducted experiments on our model for the ToS3
dataset.

Metric
Name

Experiment
4.1

Experiment
4.2

Experiment
4.3

PSNR 32.89 32.85 32.78
LPIPS 0.78 0.69 0.75
tOF 1.60 1.64 1.62
SSIM 0.872 0.880 0.869

Overall, Experiment 4.2 yields the best results collectively, and therefore we will use it for
comparison with state-of-the-art models, as shown in TABLE 5 and TABLE 6. FIGURE 4
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and FIGURE 5 present examples from the Vid4 dataset illustrating the performance of our
model.

Figure 4: Walk image. Top: Low Resolution (LR), Bottom: RBPGAN output.

Figure 5: Calendar image. Top: Low Resolution (LR), Bottom: RBPGAN output.

45



https://jaiai.org/ | July 2024 Israa Fahmy, et al.

Table 5: Comparison between Experiment 4.2 (Ours) and state-of-the-art methods on the Vid4
dataset.

Metric Experiment
4.2 (Ours)

TecoGAN RBPN (3
neighbors)

BIC ENet DuF

PSNR 25.74 25.57 26.71 23.66 22.31 27.38
LPIPS 1.44 1.62 2.00 5.04 2.46 2.61
tOF 2.35 1.90 2.19 5.58 4.01 1.59
SSIM 0.756 0.770 0.801 NA NA 0.815

Table 6: Comparison between Experiment 4.2 (Ours) and state-of-the-art methods on the ToS3
dataset.

Metric Experiment
4.2 (Ours)

TecoGAN RBPN (3
neighbors)

BIC ENet DuF

PSNR 32.85 32.65 34.32 29.58 27.82 34.60
LPIPS 0.69 1.09 1.10 4.17 2.40 1.41
tOF 1.64 1.34 1.54 4.11 2.85 1.11
SSIM 0.880 0.892 0.915 NA NA NA

8. DISCUSSION

Our hypothesis aimed to merge the highly realistic output of RBPN with the temporally
coherent output of TecoGAN to achieve a smooth, high-quality output for our model. In
the results section, we presented the metrics of our model’s output, demonstrating higher
quality compared to TecoGAN and greater temporal cohesion compared to RBPN. Although
we hoped ourmodel would generate HR videoswith qualities equivalent to RBPN, the quality
of the generated videos was not less than that of RBPN and was higher than that of TecoGAN.
This outcome is attributed to theGAN training incorporated into ourmodel and the significant
need for fine-tuning. Due to time and hardware limitations, we trained all models for the
same number of epochs, despite some models using different datasets and GANs typically
requiring more time to achieve convergence. Specifically, we trained our GAN model for
only 51 epochs, although it might have achieved higher stability with more epochs.

When assessing our model using the LPIPS metric, which measures temporal cohesion, we
found that our model surpasses both base models, TecoGAN and RBPN. This improvement
is due to the discriminator aiding the generator in learning further temporal cohesion. Further
enhancements for other metrics could have been achieved with more time for fine-tuning our
GAN model. We could have explored different combinations of loss functions and varied
learning rates to reach the optimal training conditions.
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9. LIMITATIONS AND FURTHERWORK

Our model required more powerful computational resources; however, we were limited to
a 2-GPU machine with 64GB of memory. This limitation extended the duration of our
experiments, as each took longer than usual on the available hardware. Moreover, while
our technique produces extremely realistic results for a wide variety of natural scenes, in
some cases—such as under-resolved faces and text in VSR, or tasks with dramatically dif-
fering motion between two domains—our method can provide temporally coherent but sub-
optimal details. It would be interesting to combine our technique with motion translation
from contemporaneous work in these instances [13]. Therefore, we recommend using dif-
ferent downsampling methods to introduce more generalization to the model and training the
model on more augmented datasets that focus on faces and text.

Although RBPGAN combines temporal coherence and high video accuracy, several ideas
could be explored to improve it. Visual images often prioritize the foreground, which fre-
quently includes subjects such as individuals, over the background. To enhance percep-
tual quality, we could separate the foreground and background and have RBPGAN perform
”adaptive VSR” by applying different rules for each. For example, we might use a larger
number of frames to extract features from the foreground compared to the background. Ad-
ditionally, there is ongoing research on accelerator techniques to speed up network training
and inference time, potentially leading to real-time VSR transitions. The most promising
techniques we found include Convolutional Computation Acceleration, Efficient Upsam-
pling, and Batch Normalization Fusion. We anticipate that these methods will provide a
useful basis for a wide range of generative models for real-time HR video generation.

Our model shows great promise by combining the strengths of RBPN and TecoGAN, yet
further fine-tuning and extended training could potentially yield even better performance
across all metrics.

10. CONCLUSION

We successfully validated our hypothesis and achieved the highest results in terms of tempo-
ral coherence. While current adversarial training produces generative models across various
fields, temporal correlations in the generated data have received far less attention. Our
approach focuses on enhancing learning objectives and presents a temporally self-supervised
method to address this gap. For sequential generation tasks such as video super-resolution
and unpaired video translation, natural temporal shifts are crucial.

The reduced Recurrent Back-Projection Network in our model extracts information from
each context frame, then combines and processes this information within a refinement frame-
work based on the back-projection concept in multi-frame super resolution. The inter-frame
motion is estimated concerning the target, which aids in producing more temporally coherent
videos.

Our approach not only demonstrates significant improvements in temporal coherence but also
sets the stage for further advancements in video generation tasks. By refining our methods
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and exploring additional computational resources, we can continue to push the boundaries of
video super-resolution and related fields.

11. ACKNOWLEDGMENTS

Wewish to acknowledge the help provided by the technical and support staff in the Computer
Science and Engineering department of the American University in Cairo (AUC). We would
also like to express our deepest appreciation to our supervisors Prof. Dr. Cherif Salama, Prof.
Dr. Hesham Eraqi, and Prof. Dr. Moustafa Youssef, who guided us through the project.

References

[1] Chu M, Xie Y, Leal-Taixé L, Thuerey N. Temporally Coherent Gans for Video Super-
Resolution (tecogan). 2018. ArXiv preprint: https://arxiv.org/pdf/1811.09393

[2] Haris M, Shakhnarovich G, Ukita N. Recurrent Back-Projection Network for Video Super-
Resolution. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019:3897-3906.

[3] Wang X, Chan KC, Yu K, Dong C, Change Loy C. EDVR: Video Restoration With
Enhanced Deformable Convolutional Networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition workshops. 2019.

[4] Lucas A, Lopez-Tapia S, Molina R, Katsaggelos AK. Generative Adversarial Networks and
Perceptual Losses for Video Super-Resolution. IEEE Trans Image Process. 2019;28:3312-
3327.

[5] Jo Y, Oh SW, Kang J, Kim SJ. Deep Video Super-Resolution Network Using Dynamic
Upsampling Filters Without Explicit Motion Compensation. In Proceedings of the IEEE
conference on Comput Vis Pattern Recognit. 2018:3224-3232.

[6] Dieng AB, Kim Y, Rush AM, Blei DM. Avoiding Latent Variable Collapse With Generative
Skip Models. 2018. ArXiv preprint: https://arxiv.org/pdf/1807.04863

[7] Yi P, Wang Z, Jiang K, Jiang J, Ma J. Progressive Fusion Video Super-Resolution Network
via Exploiting Non-local Spatio-Temporal Correlations. In Proceedings of the IEEE/CVF Int
Conf Comput Vis. 2019:3106-3115.

[8] Irani M, Peleg S. Improving Resolution by Image Registration. Cvgip: Graphical Models and
Image Processing. 1991;53:231-239.

[9] Irani M, Peleg S. Motion Analysis for Image Enhancement: Resolution, Occlusion, and
Transparency. J Vis Commun Image Represent. 1993;4:324-335.

[10] Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, et al. Photo-Realistic Single Image
Super-Resolution Using a Generative Adversarial Network. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017:4681-4690.

48



https://jaiai.org/ | July 2024 Israa Fahmy, et al.

[11] Sajjadi MS, Bachem O, Lucic M, Bousquet O, Gelly S. Assessing Generative Models via
Precision and Recall. Adv Neural Inf Process Syst. 2018;31.

[12] Zhang H, Goodfellow I, Metaxas D, Odena A. Self-Attention Generative Adversarial
Networks. In International conference on machine learning. PMLR. 2019;7354-7363).

[13] Aberman K, Weng Y, Lischinski D, Cohen-Or D, Chen B. Unpaired Motion Style Transfer
From Video to Animation. ACM Trans. Graph. 2020;39:64.

49


	INTRODUCTION
	RELATED WORK
	Methods with Alignment
	Motion Estimation and Motion Compensation (MEMC)
	Deformable Convolution methods (DC)

	Methods Without Alignment
	2D convolution
	3D convolution
	RCNNS
	Non-Local methods


	Our Model and Contribution
	RBPN
	TecoGAN

	DATASETS AND METRICS
	Datasets
	Evaluation Metrics

	LOSS FUNCTIONS
	EXPERIMENTS
	RESULTS
	DISCUSSION
	LIMITATIONS AND FURTHER WORK
	CONCLUSION
	ACKNOWLEDGMENTS

